|
Students who enjoy math, physics and chemistry, but who also have a keen interest in biology and medicine, should consider a career in biomedical engineering. Synthetic heart valves, the MRI scanner, and automatic bio-sensors for rapid gene sequencing are each examples of biomedical engineering. Biomedical Engineering (BME) is the newest engineering discipline, integrating the basic principles of biology with the tools of engineering.
With the rapid advances in biomedical research, and the severe economic pressures to reduce the cost of health care, biomedical engineering plays an important role in the medical environment of the 21 st century. Over the last decade, biomedical engineering has evolved into a separate discipline bringing the quantitative concepts of design and optimization to problem in biomedicine.
The opportunities for biomedical engineers are wide ranging. The medical-device and pharmaceutical industries are increasingly investing in biomedical engineers. As gene therapies become more sophisticated, biomedical engineers will have a key role in bringing these ideas into real clinical practice. Finally, as technology plays an ever increasing role in medicine, there will be a larger need for physicians with a solid engineering background. From biotechnology to tissue engineering , from medical imaging to microelectronic prosthesis, from biopolymers to rehabilitation engineering, biomedical engineers are in demand.
The occupational outlook for biomedical engineering is good, particularly for those engineers who elect to work in industry. According to the University of Cincinnati Center for Economic Education, the medical instruments and supplies industry grew by 27% during the period from 1987 to 1994. The biotechnology industry has been expanding at an even faster rate. Although the recent economic downturn has slowed the expansion in the biotechnology sector somewhat, the health care industry and allied industries are expected to maintain strong growth.
The American Society for Engineering Education reports that, among biomedical engineering Ph.D. graduates who received their degrees during the academic year 1996-97, the average starting salary for those working in industry was $62,000. About 50% of Ph.D. biomedical engineering graduates surveyed chose to work at universities, and the average salary of this group of graduates was $48,000. The average salary of clinical engineers(who do not have PhDs) was also $48,000.
For biomedical engineering technologists, particularly those who work at hospitals, the outlook is very bright. According to the Association for the Advancement of Medical Instrumentations, the high demand for and relative shortage of BMETs mean higher salaries and greater benefits for job candidates. According to the 2000 salary survey reported in the Journal of Clinical Engineering, the average salary for a BMETI position in 1999 was $31,600, while that of a BMET III position was $48,000.
Overall, the occupational outlook for biomedical engineers and biomedical engineering technologists is very good, especially in hospitals and private industry. Because of the continuing interest in biomedical technology developments, demand for biomedical engineers in government and at research institutes will remain moderately strong. |